
Fast Orthogonal Neural Networks

Bart lomiej Stasiak and Mykhaylo Yatsymirskyy

Institute of Computer Science, Technical University of Lódź
ul. Wólczańska 215, 93-005 Lódź, Poland

basta@ics.p.lodz.pl, jacym@ics.p.lodz.pl

Abstract. The paper presents a novel approach to the construction and
learning of linear neural networks based on fast orthogonal transforms.
The orthogonality of basic operations associated with the algorithm of
a given transform is used in order to substantially reduce the number
of adapted weights of the network. Two new types of neurons corre-
sponding to orthogonal basic operations are introduced and formulas for
architecture-independent error backpropagation and weights adaptation
are presented.

1 Introduction

Linear neural networks represent linear transforms of input signals. One layer of
linear neurons is capable of learning an arbitrary linear transform [1, 2], which
involves determining of O

(
N2

)
weights, where N is the dimension of the trans-

formed space.
For special types of linear transforms, including discrete Fourier transform

(DFT), discrete cosine transform (DCT), discrete sine transform (DST) and dis-
crete Hartley transform (DHT), a symmetry-based factorization of their matrices
leads to reduction in computational complexity [3–5]. Following the factorization
scheme in neural network architecture it is possible to obtain a fast multilayer
linear network with sparsely connected layers, containing O (N log (N)) weights
[6, 7]. One of the substantial advantages of such an approach is the possibility of
efficient hardware implementations, based on the existing DSP architectures [8].

In this paper we consider a new approach to constructing and teaching neural
networks of this type, based on the orthogonality of basic operations in the
underlying algorithms. A notion of a basic operation orthogonal neuron (BOON)
is introduced and two types of BOONs are presented.

The main contribution of the paper is a method of BOON-based network
teaching in an architecture-independent way, applicable to a wide class of known
orthogonal transforms. It is also shown that the application of BOONs leads to
a two-fold or a four-fold reduction in the number of weights and to an increase
in the stability of the learning process. The fast cosine transform, type II and its
variant with tangent multipliers [9] have been chosen to demonstrate the network
construction, but other known fast orthogonal transforms (e.g. [10]) may be also
easily realized.

2 Fast Two-stage Orthogonal Transforms Algorithms

In homogeneous two-stage algorithms of fast orthogonal transforms, best suited
for hardware implementation, two main types of basic operations are typically
used: trivial operations (addition/subtraction) and non-trivial ones involving
multiplications by twiddle factors. In the next part of the paper two variants of
the fast cosine transform, type II will be presented as examples of a homogeneous
two-stage algorithm construction.

2.1 Fast Cosine Transform, Type II

Let x (n) be an N -point real sequence, where n = 0, 1, ..., N−1; N = 2m; m ∈ IN.
The discrete cosine transform, type II of x (n) is defined as [11]:

LII
N (k) = DCTII

N {x (n)} =
N−1∑
n=0

x (n) C
(2n+1)k
4N , (1)

where n, k = 0, 1, ..., N − 1; Cr
K = cos (2πr/K).

The basic computational procedure of the fast cosine transform, type II
(FCT2) may be given as [9]:

LII
N (0) = L1 (0) , LII

N (N/2) =
√

2/2·L2 (0) ,

LII
N (k) = Ck

4NL1 (k) + Sk
4NL2 (N/2 − k) , (2)

LII
N (N − k) = −Sk

4NL1 (k) + Ck
4NL2 (N/2 − k) ,

k = 1, 2, ..., N/2 − 1 ,

where L1 (k) = DCTII
N/2 {a (n)} , L2 (k) = DCTII

N/2 {b (n)} and the sequences
a (n) and b (n) are formed from the input sequence x (n) as follows:

a (n) = x (2n) + x (2n + 1) ,

b (n) = (−1)n (x (2n) − x (2n + 1)) , (3)
n = 0, 1, ..., N/2 − 1 .

Formulas (2) and (3) may be applied recursively, leading to a homogeneous FCT2
algorithm, concisely described in the form of a directed graph (Fig. 1, 2).

2.2 FCT2 Algorithm with Tangent Multipliers (mFCT2)

Multiplying and dividing the formulas (2) by Ck
4N enables an additional opti-

mization [9] by means of cumulating the coefficients Ck
4N as a single multiplica-

tion performed as the last step of the transform (Fig. 3, 4).

Fig. 1. Directed graph of the FCT2 algorithm for N = 8, s =
√

2/2

Fig. 2. Basic operations of the FCT2 algorithm

Fig. 3. Directed graph of the mFCT2 algorithm for N = 8

Fig. 4. Basic operations of the mFCT2 algorithm

3 Orthogonal Neural Networks

3.1 Orthogonal Basic Operations

Based on the diagram in Fig. 1 a neural network architecture where each non-
trivial basic operation is replaced by two neurons [6, 7] may be built. Both neu-
rons corresponding to a single basic operation have two inputs, i.e. the number
of weights to adapt equals 4. A basic operation may be therefore seen as a 2-by-2
matrix multiplication[

y1

y2

]
= P4 ·

[
x1

x2

]
, where P4 =

[
w11 w12

w21 w22

]
. (4)

However, considering the matrix representation of the third operation in Fig. 2
we notice that only two weights are actually needed[

y1

y2

]
= P2 ·

[
x1

x2

]
, where P2 =

[
u w

−w u

]
. (5)

The significant difference lies in the orthogonality of matrix P2. In fact, P2 sat-
isfies even more restrictive condition: not only are its rows/columns orthogonal,
but they are also of equal norm (the orthogonality condition itself would imply
adapting three independent weights).

Taking into account the explicit target values of P2 elements, u = Ck
4N ;

w = Sk
4N , it is also possible to express the weights of a basic operation as

functions of one parameter α, e.g. u = cos (α) ; w = sin (α). This is equivalent
to defining the rows/columns of P2 as orthonormal vectors. Such an approach
would, however, result in the necessity of trigonometric functions computations
in the course of the learning process, which is undesirable.

The solution to the last inconvenience may be obtained by implementing the
neural network on the basis of the mFCT2 algorithm. This implies considering[

y1

y2

]
= P1 ·

[
x1

x2

]
, where P1 =

[
1 t

−t 1

]
, (6)

according to the third operation presented in Fig. 4.

3.2 Teaching Methods

The main practical issue resulting from the application of matrices P2 or P1

affects the methods of neuronal weights adaptation. The classical definition of a
neuron should be modified here to reflect the relationship between the outputs of
the basic operation. We would either talk about two associated neurons, orthog-
onal to each other, or simply about a basic operation orthogonal neuron (BOON)
with two outputs. It is also worth noting that the matrix P4 does not require
any special treatment, as its rows may be seen as representations of classical in-
dependent neurons with two inputs. As gradient backpropagation methods seem

the best choice for teaching the considered types of neural networks [7], a proper
algorithm suited for the special forms of matrices P2 and P1 is necessary.

Considering a simple case of two connected layers shown in Fig. 5 and assum-
ing that the basic operation matrix has a form defined by (5) we can explicitly
express the outputs of the network as functions of its inputs

y1 = u
(2)
1 v1 + w

(2)
1 v2

y2 = −w
(2)
1 v1 + u

(2)
1 v2

y3 = u
(2)
2 v3 + w

(2)
2 v4

y4 = −w
(2)
2 v3 + u

(2)
2 v4

, where

v1 = u
(1)
1 x1 + w

(1)
1 x3

v2 = u
(1)
2 x2 + w

(1)
2 x4

v3 = −w
(1)
1 x1 + u

(1)
1 x3

v4 = −w
(1)
2 x2 + u

(1)
2 x4

(7)

and where the expressions u
(l)
k and w

(l)
k refer to the k-th operation of the l-th

layer. Our goal is to minimize the error function given as:

E =
1
2

N∑
i=1

(yi − di)
2

, (8)

where N = 4 and di represents an expected value of the i-th output.

Fig. 5. Two layers of an orthogonal network, each containing 2 basic operation neurons

Substituting (7) into (8) and computing derivatives for the weights in the
second and in the first layer we arrive at formulas defining the components of
the gradient vector and the error vector for a single basic operation[

∂E
∂u

∂E
∂w

]
=

[
v1 v2

v2 −v1

]
·

[
e
(n)
1

e
(n)
2

]
, (9)

[
e
(n−1)
1

e
(n−1)
2

]
= PT

2 ·

[
e
(n)
1

e
(n)
2

]
, (10)

where PT
2 denotes the transpose of P2.

The parameters v1 and v2 represent the inputs of the basic operation, the

vector
[
e
(n)
1 , e

(n)
2

]T

refers to the error values propagated back from the next

layer and the vector
[
e
(n−1)
1 , e

(n−1)
2

]T

defines the error values to be propagated
back from the current layer to the previous one. As the matrix P1 (6) is a special
case of the matrix P2 (5) for u = 1, the corresponding formulas, suitable for
teaching an mFCT2-based network, can be derived from (9), (10) as follows:

∂E

∂t
=

[
v2, −v1

]
·

[
e
(n)
1

e
(n)
2

]
, (11)

[
e
(n−1)
1

e
(n−1)
2

]
= PT

1 ·

[
e
(n)
1

e
(n)
2

]
. (12)

The formulas (9) - (12) have a general meaning, i.e. they are applicable to a
basic operation irrespective of its location in the network architecture. Moreover,
no specific architecture is imposed as the information about the indexes of the
interconnected basic operations’ inputs/outputs is sufficient. Given the compo-
nents of the gradient vector, any known gradient method may be successfully
applied to minimize the error function of the network.

The numbers of multiplications (µ) and additions (α) for the matrices are:

µ (P4) = 8 µ (P2) = 8 µ (P1) = 4
α (P4) = 2 α (P2) = 4 α (P1) = 3 . (13)

These values concern gradient computation and error backpropagation only. As
one of the most crucial parameters influencing the efficiency of gradient mini-
mization algorithms is the number of the adapted weights, its two-fold (P2) and
four-fold (P1) reduction will actually play the most important role in a global
computational complexity improvement.

It should also be noted that learning of the inverse transform may be easily
realized by changing all the matrices to their (properly scaled) transpositions.

3.3 Experimental Validation

The presented methods of teaching the BOONs were implemented within a
framework developed for testing neural networks with arbitrary connections.

Three groups of tests were performed to compare the capabilities of a non-
orthogonal FCT2-based network (type P4 BOONs) and of two orthogonal net-
works: FCT2 and mFCT2-based (type P2 BOONs and type P1 BOONs). Several
datasets, varied by the length and the number of input vectors, were used for all
groups. The teaching was repeated ten times for each dataset, from a random
starting point. The averaged results are presented in Tables 1, 2, 3, respectively.

Table 1. Results of FCT2-based non-orthogonal network training

N P Mean epochs Epochs std Mean time [s] Time std Weights

8 4 49 6.063 0.1329 0.0619442 20
16 8 119 23.7445 1.2891 0.245518 68
32 16 125 37.5847 8.2673 2.41184 196
64 32 172 81.5784 78.6579 37.2662 516

Table 2. Results of FCT2-based orthogonal network training

N P Mean epochs Epochs std Mean time [s] Time std Weights

8 4 25 1.96214 0.0782 0.0474443 10
16 8 46 3.74299 0.525 0.0564659 34
32 16 58 1.84662 3.9814 0.126828 98
64 32 71 2.5865 33.3281 1.16706 258

Table 3. Results of mFCT2-based orthogonal network training

N P Mean epochs Epochs std Mean time [s] Time std Weights

8 4 14 1.22066 0.0625 0.0394899 5
16 8 25 0.916515 0.297 0.0270222 17
32 16 24 0.538516 1.7124 0.04304 49
64 32 22 0 10.9764 0.1246 129

The first two columns contain the size (N) and the number (P) of random
input vectors and std is the standard deviation. Target vectors for all the datasets
were computed according to the formula (1).

The conjugate gradient method was applied as an algorithm of error function
minimization [1] and the teaching was stopped when the error was lower than
1e-9. The tests were performed on a computer with Intel Celeron M, 1.40 GHz
processor.

The teaching of the orthogonal networks proved to be a stable process in
terms of the standard deviation of its length. The most interesting observation
is the almost constant number of epochs in the case of mFCT2-based network.
A closer examination revealed that the final state of the network was always
similar for a given dataset and equal to the state obtainable by computing the
weights values directly.

The relatively high mean time values for higher N result from the generality
and flexibility of the framework which involves operations on large connection
matrices. The comparison between the tables, however, shows a definite supe-
riority of the orthogonal networks, which is particularly clear in the case of
type P1 BOONs.

4 Conclusion

A new method of constructing and teaching neural networks based on fast or-
thogonal transforms was presented. Respecting the orthogonality of the basic
operations allowed to reduce the number of the adapted weights in compari-
son to the non-orthogonal network, increasing the efficiency and stability of the
learning process. Owing to the generality of the presented solutions, the pro-

posed BOONs may be used in the construction of neural networks realizing a
wide class of known orthogonal transforms.

References

1. Osowski, S.: Neural networks for information processing. (in Polish) OWPW, War-
saw (2000)

2. Rutkowski, L.: Methods and techniques of artificial intelligence. (in Polish) Polish
Scientific Publishers PWN (2005)

3. Wang, Z.: Fast algorithms for the discrete W transform and for the discrete Fourier
transform. IEEE Trans. on Acoustics, Speech, and Signal Processing 32 (1984) 803-
816

4. Yatsymirskii, M.N.: Fast algorithms for the discrete cosine transformation. Comput.
Maths Math. Phys 33 (1993) 267-270

5. Egner, S., Püschel, M.: Automatic generation of fast discrete signal transforms.
IEEE Trans. on Signal Processing 49 (2001) 1992-2002

6. Jacymirski, M., Szczepaniak, P.S.: Neural realization of fast linear filters. In: Proc.
of the 4th EURASIP - IEEE Region 8 International Symposium on Video/Image
Processing and Multimedia Communications. (2002) 153-157

7. Szczepaniak, P.S.: Intelligent computations, fast transforms and classifiers. (in Pol-
ish) EXIT Academic Publishing House, Warsaw (2004)

8. Rabiner, L.R., Gold, B.: Theory and application of digital signal processing.
Prentice-Hall (1975)

9. Jacymirski, M.: Fast homogeneous algorithms of cosine transforms, type II and III
with tangent multipliers. (in Polish) Automatics 7 AGH University of Science and
Technology Press, Cracow (2003) 727-741

10. Yatsymirskyy, M.M.: Shifted in the time and frequency domains cosine and
sine transforms fast algorithms with homogeneous structure. (in Russian) Izvestiya
Vysshikh Uchebnykh Zavedenii, Radioelektronika 43, Kiev (2000) 66-75

11. Ahmed, N., Rao, K.R.: Orthogonal transforms for digital signal processing.
Springer-Verlag, New York (1975)

