Computer Architecture

Lecture IV

Selected external x86 microprocessor
elements

Iterrupts

- Iterrupts are used to communicate a computer system with external devices
such as a keybard, a printer, system timers, hard and floppy disk controllers,
sound cards or graphics cards that need immediate handling.

- Iterrupts were introduced in processor's architecture to avoid wasting processor
time for so called polling loops i.e repeatedly sampling the status of all external
devices connected to a computer system in order to check weather they need
handling.

Main program

mowr

I
sub A
mov ., StrLen —> Lusha
mowr , DFF3ET Buffer cmp .
omp Buffer, It i dne NumbCrrerflow
jne StrLoop errup mov si, OFFSET MinStr
ine - moy di, OFFSET Dest3tr
dec L
jb -
Keyboard press cmp BYTE PTR [s1]. .
causing interrupt Jja mov .
signal. ine cld
loop 3trlLoop rep movsh Iterrupt handler
stco popa
ret

iret

clc End of Iterrupt handler:

ret restore processor state
and return to the next instruction
of the interrupted program.

Intel 8259A Programmable Interrupt
Controller

Intel 8259A Programmablelnterrupt Controller is a circuit which controls

iterrupt handling.

=0 ~ a miT
wh [] 2 #1 [4,
Ao [3 2 [INTA
s =[Oy
| #a [T 1Re
o,)t 21[7Ag
u.; T ::l::u-u
A CAR ELE]
o] m[linz
n, 1a[1m
w, [v 18 [ifg
L 1m BF; 10 [Jawr
cas1] s [] Boin
Ghn] 14 iG [10as 7

Fig. 1. 8259A Pinout

isT A

|

INT

DATA
BUS
BUFFER

LOMTROL LOGIE

)

f1

i

AL &Lk

WRITE — N

LimGEE SEAVICE
HEG
115H1

SR |

PR OCRITY
L SV ER

IMTERRLFT

REQUEST
AEG
AR

-+ Fiil
—iF i

e |]
w=—|A]
— R4
T

e | [y

f | i T

|

CASD s——]

Cat |

Cas }

|

CABCADE O

BUFFER/ -

IRTERALIPT MASE REG
[§1500

COMPARATOR

T —T ™

TAMTEANAL BUE

Fig. 2. 8259A Block Diagram

Intel 8259A Programmable Interrupt

Controller functional blocks

INTERRUPT REQUEST REGISTER (IRR)
- is used to store all the interrupt levels which are requesting service

IN-SERVICE REGISTER (ISR)
- it is used to store all the interrupt levels which are being serviced.

INTERRUPT MASK REGISTER (IMR)
it is used to store the bits which mask the interrupt lines to be masked.

PRIORITY RESOLVER
This logic block determines the priorites of the interrupts.

READ/WRITE CONTROL LOGIC
The function of this block is to accept commands from the CPU,
it also allows the status of the 8259A to be transferred onto the Data Bus.

DATA BUS BUFFER
Bidirectional 8-bit buffer used to interface the 8259A to the system Data Bus.
Control words and status information are transferred through this buffer.

Intel 8259A Programmable Interrupt

Controller functional blocks

THE CASCADE BUFFER/COMPARATOR

This function block stores and compares the IDs of all 8259A's used in the
system. The associated three I/O pins (CAS0-2) are outputs when the 8259A
Is used as a master and are inputs when the 8259A is used as a slave.

As a master, the 8259A sends the ID of the interrupting slave device

onto the CASO0+2 lines. The slave thus selected will send its preprogrammed

subroutine address onto the Data Bus during the next one or two consecutive
INTA pulses.

INT (INTERRUPT)
This output goes directly to the CPU interrupt input.

~INTA (INTERRUPT ACKNOWLEDGE)
INTA pulses will cause the 8259A to release interrupt soubroutine
address onto the data bus.

IRO - IR7
Interrupt request lines.

Intel 8259A Programmable Interrupt

Controller functional blocks

~CS (CHIP SELECT)
A LOW on this input enables the 8259A. No reading
or writing of the chip will occur unless the device is selected.

~WR (WRITE)
A LOW on this input enables the CPU to write control words to the 8259A.

~RD (READ)

A LOW on this input enables the 8259A to send the
status of the Interrupt Request Register (IRR),

In Service Register (ISR), the Interrupt Mask Register
(IMR) or the Interrupt level onto the Data Bus.

~A0

This input signal is used in conjunction with WR and RD signals to write
commands into the various command registers, as well as reading

the various status registers of the chip. This line can be tied directly

to one of the address lines.

~SP — if LOW a chip works in a slave mode when cascade of 8259A are used.

Intel 8259A Programmable Interrupt
Controller operation

. One or more of the INTERRUPT REQUEST lines (IR7+0) are raised high,

setting the corresponding IRR bit(s).

. The 8259A evaluates these requests, and sends an INT to the CPU,

if appropriate.

. The CPU acknowledges the INT and responds with an INTA pulse.
. Upon receiving an INTA from the CPU the highest priority ISR bit is set

and the corresponding IRR bit is reset. The 8259A will also release
a CALL instruction code onto the 8-bit Data Bus through its D70 pins.

. This CALL instruction will initiate two more INTA pulses to be sent

to the 8259A from the CPU group.

. These two INTA pulses allow the 8259A to release its preprogrammed

subroutine address onto the Data Bus. The lower 8-bit address is
released at the first INTA pulse and the higher 8-bit address is released
at the second INTA pulse.

. This completes the 3-byte CALL instruction released by the 8259A.

In the AEOI mode the ISR bit is reset at the end of the third INTA pulse.
Otherwise, the ISR bit remains set until an appropriate EOl command
is issued at the end of the interrupt sequence.

Intel 8259A Programmable Interrupt
Controller typical system setup

[1
10 1/ 10
8253A DEVICE DEVICE DEVICE
INT
=86
ROM RAM
{ — Address Bus — —
(: Data Bus
{ Control Bus

Cs A0 D7-DO ED WE INTA INT

CASO
8259A MASTER CASI
CAS2
SPEN IR7TIR6 .. IR3 ... IRD
|
R
'\\ /./ '\\ /./
Vee CS A0 D7-D0 INT C$ A0 D7-D0 INT
CASO [CASO [
2250A SLAVE CASL [| | 8250ASLAVE CASl [—
CAS?2 CAS2
SPEN IR7 IR6 ... IRO SPEN IR7T IR6 ... IR0
GND ‘ ‘ GND ‘ ‘

Fig. 3. 8259A system setup in a a cascade mode

Intel 8259A Programmable Interrupt
Controller devices

PC/XT Architecture

IRQO — Intel 8253 or Intel 8254 Programmable Interval Timer

IRQ1 — Intel 8042 keyboard controller

IRQ2 — not assigned in PC/XT; cascaded to slave 8259 INT line in PC/AT
IRQ3 — 8250 UART serial port COM2 and COM4

IRQ4 — 8250 UART serial port COM1 and COM3

IRQS5 — hard disk controller in PC/XT; Intel 8255 parallel port LPT2 in PC/AT
IRQ6 — Intel 82072A floppy disk controller

IRQ7 — Intel 8255 parallel port LPT1 / spurious interrupt

PC/AT Architecture

IRQ8 — real-time clock (RTC)

IRQ9 — no common assignment

IRQ10 — no common assignment

IRQ11 — no common assignment

IRQ12 — Intel 8042 PS/2 mouse controller

IRQ13 — math coprocessor

IRQ14 — hard disk controller 1

IRQ15 — hard disk controller 2

Intel 8259A Programmable Interrupt
Controller priorities

System timer
generates interrupt
18 times per second

SYSTEM
TIMER

Main program

mov o,
sub ox, ox

movy ol, 3trlen
moy =i, OFFIET Buffer

cmp EBuffer, e

pusha
Jne StrlLoop -
inc =i Keyboard e g2 E
Jne MNumbCrverflow
dec o Iterrupt I) .
Keyboard press) < r»mu'ur =i, OFF3ET MinStr
causing interrupt b ox) mov di, OFFSET DestStr
signal. cmp BYTE PTE [sil, | -
12 | bl
inc =i .
loop StrlLoop I movr cx,
str
cld
ret 1 rep movsh Keyboard
cle pusha «f — =— 1= — lterrupt handler
ret B, popa
iret

Jne MNumbCreerflow
movy si, OFFIET Min3tr
mov di, OFFIET Desti3tr

End of Keyboard Iterrupt handler:
restore processor state

(’f

_ bt and return to the next instruction

System timer . of the interrupted program.

Iterrupt handler .

has a higher priority mov ox,

so it interrupts old .

keyboard interrupt rep morsh End of SyStem Timer |terrupt

handler handler: restore processor state
popa) :
iret mm = o —— —— = — and return to the next instruction

of the interrupted program.

Intel 8259A Programmable Interrupt
Controller programming

Interrupt Controller is programmed by sending to its Data Buffer special

control words ICWn (Initialization Control Word no. n) and OCWn

(Operational control word no. n). The most commonly used OCW is OCW2 which
enables interrupt priority setup and general interrupt handling.

CHOW 2
n, n, D D0, 0 0, D 0 - If SL bit is set take L2, L1 and LO bits into consideration
otherwise do not take those bits into consideration
‘ R | SL | eor) 0 0 L | L] L - if R bit is set perform suitable priority rotation
IR LEVEL TO BE
ACTED UPON
o 1 2 1] 5 2] 7
0 1 f 1 0 1 (1] 1
=| 0 1] 1 1 [i 1
0 |lojo]ofjr] v}
L] 1
o0 1 NON-SPECIFIC EQICOMMAND END OF INTERRUPT
] 1 i SPECIFIC EQI COMMAND
1 0 1 ROTATE OM NON-SPECIFIC EQl COMMAMD
1 J o] o] ROTATE iN AUTOMATIC EOI MODE (SET) AUTOMATIC ROTATION
o [} 0 ROTATE IN AUTOMATIC ECI MODE (CLEAR)
1 1 1 “RAOTATE OM SPECIFIC EO| COMMAND
SPECIFIC ROTATION
1 1 0 “SET PRIORITY COMMAMND }
0 1 0 HNO OPERATION

“LO-L2 ARE USED

Intel 8259A Programmable Interrupt
Controller programming

Interrupt Controller Data Buffer is located at system port 20h.

For example to send OCW?2 to request an IRQ5 to have a lowest

priority one can use C++ command: outp(0x20, 0xC5);

where 20h is the port number in which the Data Buffer is located at

and C5h is the OCW2 command saying ,set the lowest priority for IRQ5

and rotate all other priorities" i.e IRQ6 wil have a highest priority,

the next highest priorities will be for IRQ7, IRQO, IRQ1, IRQ2, IRQ3 and IRQ4.
Next example sends OCW2 to inform Interrupt Controller that the interrupt
procedure is about to be finished by sending non-speciofic EOI (End of Interrupt)
command to a controller:outp(0x20, 0x20);

7 6 5 4 3 2 1 0 IRG number
hefore rotat
7 6 5 4 3 2 1 0 IRQ priority
lowest priority highest priority
] interrupt
7 6 5 4 3 2 1 0 IRG number

2 1 0 7 6 3 4 IRQ priority

Interrupt handlers

Interrupt handler is a procedure which is called by the processor each time
an interrupt occures. Every interrupt has it's own number (do not confuse

it with a hardware IRQ number) and an interrupt vector associated with it.
Interrupt vectors are situated at addres 0000:0000 each has 4 bytes in length
and stores the address of a suitable interrupt handler. Interrupt numbers
along with their usage is shown below:

00h - 01h Exception Handlers -

02h Non-Maskable IRQ Non-Maskable IRQ (Parity Errors)
03h - 07h Exception Handlers -

08h Hardware IRQO System Timer

09h Hardware IRQ1 Keyboard

OAh Hardware IRQ2 -

0Bh Hardware IRQ3 Serial Comms. COM2/COM4
0Ch Hardware IRQ4 Serial Comms. COM1/COM3
0Dh Hardware IRQ5 Reserved/Sound Card

OEh Hardware IRQ6 Floppy Disk Controller

OFh Hardware IRQ7 Parallel Comms.

10h - 6Fh Software Interrupts -

70h Hardware IRQ8 Real Time Clock

71h Hardware IRQ9 Redirected IRQ2

72h Hardware IRQ10 Reserved

73h Hardware IRQ11 Reserved

74h Hardware IRQ12 PS/2 Mouse

75h Hardware IRQ13 Math's Co-Processor

76h Hardware IRQ14 Hard Disk Drive

77h Hardware IRQ15 Reserved

78h - FFh Software Interrupts -

Interrupt handlers

One can override original interrupt handler by his/her own procedure by changing
the address of an suitable interrupt handler in a interrupt vector table.

For example to change a keyboard interrupt handler to our own procedure

we have to write the address of our handler to a 09h-th index of the interrupt
vector table. Typical C++ code for doing so is hsown below:

vold interrupt (* OldEevbhoardHandler){...}):
vold interrupt CurkKevhoardHandler{...}

{

asm 3ti

}

vold maind)

{

}

OldEevhoardHandler{) ;

//make some operations

outpi

COldEevhoardHandler = getwvect| Y

Setwvect(

,

¥

CurKevhoardHandler) ;

S fmake some operations

Setwvect(

,

OldEevhoardHandler) ;

ffa warishle for preserving
fioriginal kevhoard handlrer
ffadderss

Fiour new kevhoard handler

//enable other interrupts

Sfoall original kevhorad handler

ffto handle key press

Jimake some operations specific

Adto our new handler

ff3end EOI to the interrupt controller

Afmain program fuchtion

Sfgave original kevhoard handler address

ffset ne kevboard handler address to our hew routine
Sfmake some program operations

ffrestore original handler prior to ending the prograto

Thank you for today's lecture.

