
  

Computer ArchitectureComputer Architecture

Lecture IVLecture IV

Selected external x86 microprocessor Selected external x86 microprocessor 
elementselements



  

IterruptsIterrupts
- Iterrupts are used to communicate a computer system with external devices
  such as a keybard, a printer, system timers, hard and floppy disk controllers,    
  sound cards or graphics cards that need immediate handling. 

- Iterrupts were introduced in processor's architecture to avoid wasting processor
  time for so called polling loops i.e repeatedly sampling the status of all external 
  devices connected to a computer system in order to check weather they need 
  handling.

Keyboard press 
causing interrupt 
signal.

Iterrupt handler

Main program

Iterrupt

End of Iterrupt handler:
restore processor state
and return to the next instruction 
of the interrupted program.



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
ControllerController

Intel 8259A ProgrammableInterrupt Controller is a circuit which controls
iterrupt handling.

Fig. 1.  8259A Pinout

Fig. 2.  8259A Block Diagram



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller functional blocksController functional blocks

INTERRUPT REQUEST REGISTER (IRR)
- is used to store all the interrupt levels which are requesting service

IN-SERVICE REGISTER (ISR) 
- it is used to store all the interrupt levels which are being serviced.

INTERRUPT MASK REGISTER (IMR)
it is used to store the bits which mask the interrupt lines to be masked.

PRIORITY RESOLVER
This logic block determines the priorites of  the interrupts.

READ/WRITE CONTROL LOGIC
The function of this block is to accept commands from the CPU, 
it also allows the status of the 8259A to be transferred onto the Data Bus.

DATA BUS BUFFER
Bidirectional 8-bit buffer used to interface the 8259A to the system Data Bus. 
Control words and status information are transferred through this buffer.



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller functional blocksController functional blocks

THE CASCADE BUFFER/COMPARATOR
This function block stores and compares the IDs of all 8259A's used in the 
system. The associated three I/O pins (CAS0-2) are outputs when the 8259A
is used as a master and are inputs when the 8259A is used as a slave. 
As a master, the 8259A sends the ID of the interrupting slave device 
onto the CAS0±2 lines. The slave thus selected will send its preprogrammed 
subroutine address onto the Data Bus during the next one or  two consecutive 
INTA pulses.

INT (INTERRUPT)
This output goes directly to the CPU interrupt input.

~INTA (INTERRUPT ACKNOWLEDGE)
INTA pulses will cause the 8259A to release interrupt soubroutine
address onto the data bus. 

IR0 – IR7
Interrupt request lines.



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller functional blocksController functional blocks

~CS (CHIP SELECT)
A LOW on this input enables the 8259A. No reading
or writing of the chip will occur unless the device is selected.

~WR (WRITE)
A LOW on this input enables the CPU to write control words to the 8259A.

~RD (READ)
A LOW on this input enables the 8259A to send the
status of the Interrupt Request Register (IRR), 
In Service Register (ISR), the Interrupt Mask Register
(IMR) or the Interrupt level onto the Data Bus.

~A0
This input signal is used in conjunction with WR and RD signals to write 
commands into the various command registers, as well as reading 
the various status registers of the chip. This line can be tied directly 
to one of the address lines.

~SP – if LOW a chip works in a slave mode when cascade of 8259A are used.



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller operationController operation

1. One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high,  
    setting the corresponding IRR bit(s).
2. The 8259A evaluates these requests, and sends an INT to the CPU, 
    if appropriate.
3. The CPU acknowledges the INT and responds with an INTA pulse.
4. Upon receiving an INTA from the CPU the highest priority ISR bit is set 
    and the corresponding IRR bit is reset. The 8259A will also release 
    a CALL instruction code onto the 8-bit Data Bus through its D7±0 pins.
5. This CALL instruction will initiate two more INTA pulses to be sent 
    to the 8259A from the CPU group.
6. These two INTA pulses allow the 8259A to release its preprogrammed 
    subroutine address onto the Data Bus. The lower 8-bit address is 
    released at the first INTA pulse and the higher 8-bit address is released 
    at the second INTA pulse.
7. This completes the 3-byte CALL instruction released by the 8259A. 
    In the AEOI mode the ISR bit is reset at the end of the third INTA pulse.
    Otherwise, the ISR bit remains set until an appropriate EOI command 
    is issued at the end of the interrupt sequence.



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller typical system setupController typical system setup

Fig. 3.  8259A system setup in a a cascade mode



  

PC/XT Architecture
----------------------------------------------------------------------------------
IRQ0 – Intel 8253 or Intel 8254 Programmable Interval Timer
IRQ1 – Intel 8042 keyboard controller
IRQ2 – not assigned in PC/XT; cascaded to slave 8259 INT line in PC/AT
IRQ3 – 8250 UART serial port COM2 and COM4
IRQ4 – 8250 UART serial port COM1 and COM3
IRQ5 – hard disk controller in PC/XT; Intel 8255 parallel port LPT2 in PC/AT
IRQ6 – Intel 82072A floppy disk controller
IRQ7 – Intel 8255 parallel port LPT1 / spurious interrupt
PC/AT Architecture
----------------------------------------------------------------------------------
IRQ8 – real-time clock (RTC)
IRQ9 – no common assignment
IRQ10 – no common assignment
IRQ11 – no common assignment
IRQ12 – Intel 8042 PS/2 mouse controller
IRQ13 – math coprocessor
IRQ14 – hard disk controller 1
IRQ15 – hard disk controller 2
----------------------------------------------------------------------------------

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller devicesController devices



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller prioritiesController priorities

Keyboard press 
causing interrupt 
signal.

Keyboard
Iterrupt handler

Main program

Keyboard
Iterrupt

End of Keyboard Iterrupt handler:
restore processor state
and return to the next instruction 
of the interrupted program.

System timer 
generates interrupt 
18 times per second

System timer
Iterrupt handler
has a higher priority 
so it interrupts
keyboard interrupt 
handler

End of System Timer Iterrupt 
handler: restore processor state
and return to the next instruction 
of the interrupted program.



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller programmingController programming

Interrupt Controller is programmed by sending to its Data Buffer special
control words ICWn (Initialization Control Word no. n) and OCWn 
(Operational control word no. n). The most commonly used OCW is OCW2 which 
enables interrupt priority setup and general interrupt handling. 

Fig. 4.  8259A OCW2 format

- If SL bit is set take L2, L1 and L0 bits into consideration 
  otherwise do not take those bits into consideration
- if R bit is set perform suitable priority rotation



  

Intel 8259A Programmable Interrupt Intel 8259A Programmable Interrupt 
Controller programmingController programming

Interrupt Controller Data Buffer is located at system port 20h.
For example to send OCW2 to request an IRQ5 to have a lowest 
priority one can use C++ command: outp(0x20, 0xC5);
where 20h is the port number in which the Data Buffer is located at
and C5h is the OCW2 command saying „set the lowest priority for IRQ5
and rotate all other priorities" i.e IRQ6 wil have a highest priority, 
the next highest priorities will be for IRQ7, IRQ0, IRQ1, IRQ2, IRQ3 and IRQ4.
Next example sends OCW2 to inform Interrupt Controller that the interrupt
procedure is about to be finished by sending non-speciofic EOI (End of Interrupt) 
command to a controller:outp(0x20, 0x20);

                                                 



  

Interrupt handlersInterrupt handlers
Interrupt handler is a procedure which is called by the processor each time 
an interrupt occures. Every interrupt has it's own number (do not confuse 
it with a hardware IRQ number) and an interrupt vector associated with it. 
Interrupt vectors are situated at addres 0000:0000 each has 4 bytes in length 
and stores the address of a suitable interrupt handler. Interrupt numbers 
along with  their usage is shown below:

00h - 01h Exception Handlers -
02h Non-Maskable IRQ Non-Maskable IRQ (Parity Errors)
03h - 07h Exception Handlers -
08h Hardware IRQ0 System Timer
09h Hardware IRQ1 Keyboard
0Ah Hardware IRQ2 -
0Bh Hardware IRQ3 Serial Comms. COM2/COM4
0Ch Hardware IRQ4 Serial Comms. COM1/COM3
0Dh Hardware IRQ5 Reserved/Sound Card
0Eh Hardware IRQ6 Floppy Disk Controller
0Fh Hardware IRQ7 Parallel Comms.
10h - 6Fh Software Interrupts -
70h Hardware IRQ8 Real Time Clock
71h Hardware IRQ9 Redirected IRQ2
72h Hardware IRQ10 Reserved
73h Hardware IRQ11 Reserved
74h Hardware IRQ12 PS/2 Mouse
75h Hardware IRQ13 Math's Co-Processor
76h Hardware IRQ14 Hard Disk Drive
77h Hardware IRQ15 Reserved
78h - FFh Software Interrupts -

 



  

Interrupt handlersInterrupt handlers
One can override original interrupt handler by his/her own procedure by changing 
the address of an suitable interrupt handler in a interrupt vector table. 
For example to change a keyboard interrupt handler to our own procedure 
we have to write the address of our handler to a 09h-th index of the interrupt 
vector table. Typical C++ code for doing so is hsown below:



  

Thank you for today's lecture.Thank you for today's lecture.


